

 Navigation

 	
 index

 	libstorage-akutz latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/libstorage-akutz/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/libstorage-akutz/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	libstorage-akutz latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 .docs/about/license.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Licensing

The legal stuff

libStorage License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/about/contributing.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Contributing to libStorage

An introduction to contributing to the libStorage project

The libStorage project welcomes, and depends, on contributions from developers
and users in the open source community. Contributions can be made in a number of
ways, a few examples are:

		Code patches via pull requests

		Documentation improvements

		Bug reports and patch reviews

Reporting an Issue

Please include as much detail as you can. This includes:

		The OS type and version

		The libStorage commit

		The storage system in question

		A set of logs with debug-logging enabled that show the problem

Submitting Pull Requests

Once you are happy with your changes or you are ready for some feedback, push
it to your fork and send a pull request. For a change to be accepted it will
most likely need to have tests and documentation if it is a new feature.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_images/architecture-decentralized.png
CONTAINER RUNTIME

CONTAINER RUNTIME

OPERATING
SYSTEM

LIBSTORAGE CLIENT LIBSTORAGE CLIENT
—==
- \
s RY]
LIBSTORAGE SERVER LIBSTORAGE SERVER

DECENTRALIZED
STORAGE
ORCHESTRATION
TOOL

STORAGE

PLATFORM

HETEROGENEOUS
STORAGE API

_static/minus.png

_images/architecture-embeddedlibstorage.png
CONTAINER RUNTIME

CONTAINER RUNTIME

LIBSTORAGE CLIENT

LIBSTORAGE CLIENT

OPERATING
SYSTEM

LIBSTORAGE SERVER

STORAGE

J

LATFORM

LIBSTORAGE API

_images/architecture-today.png
CONTAINER RUNTIME

CONTAINER RUNTIME

VOLUME PLUGIN

OPERATING

SYSTEM

’,,/ =3 STORAGE
- ORCHESTRATION

VOLUME PLUGIN TOOL
CONTROL PLANE e
F HETEROGENEOUS
DATA PLANE o STORAGE API
- Z -
STORAGE PLATFORM

_static/up-pressed.png

_static/plus.png

.docs/index.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

libStorage

Opening up storage for all

Overview

libStorage provides a vendor agnostic storage orchestration model,
API, and reference client and server implementations. It focuses on being a
portable storage driver framework that brings external storage functionality to
any platform or application.

Features

The project has some very unique qualities that make it perfect for embedding
in upstream projects to centralize external storage functionality.

		Lightweight client package enable minimal dependencies to provide full
featured storage functionality to platforms

		Embedded and remotable modes for providing choice of centralized control of
storage operations

		Optionally enables storage platforms to serve as libStorage servers making
integration of application platforms native

		Dynamically downloaded executors run specific storage tasks without critical
long running plugins per host

		Includes Go client/server packages for simple integration to other platforms
and applications

		Flexible HTTP/JSON API for other deployment opportunities

Operations

Today libStorage supports the following volume management features.

		List/Inspect for retrieving volumes and detailed information

		Create/Remove for managing volume lifecycle

		Attach/Detach for getting volumes to instaces to be used

		Mount/Unmount to comprehensively get volumes to instances, discover,
optionally format, and mount

		Path to review the existing mounted path of a volume

		Map to list the current attached volumes to an instance

The operations for Snapshots and Storage Pools is planned for future
releases.

Getting Started

Using libStorage can be broken down into several, distinct steps:

		Configuring libStorage

		Understanding the API [http://docs.libstorage.apiary.io]

		Identifying a production server and client implementation, such as
REX-Ray [https://rexray.rtfd.org]

Getting Help

To get help with libStorage, please use the
discussion group [https://groups.google.com/forum/#!forum/emccode-users],
GitHub issues [https://github.com/emccode/libstorage/issues], or tagging
questions with EMC at StackOverflow [https://stackoverflow.com].

The code and documentation are released with no warranties or SLAs and are
intended to be supported through a community driven process.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/architecture-centralized.png
CONTAINER RUNTIME

CONTAINER RUNTIME

LIBSTORAGE CLIENT

LIBSTORAGE CLIENT

OPERATING
SYSTEM

LIBSTORAGE SERVER

STORAGE

PLATFORM

CENTRALIZED
STORAGE
ORCHESTRATION
TOOL

HETEROGENEOUS
STORAGE API

.docs/dev-guide/build-reference.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Build Reference

How to build libStorage

Build Requirements

This project has very few build requirements, but there are still one or two
items of which to be aware. Also, please note that this are the requirements to
build libStorage, not run it.

Requirement | Version
————|——–
Operating System | Linux, OS X
Go [https://golang.org/] | >=1.6
GNU Make [https://www.gnu.org/software/make/] | >=3.80
Glide [https://glide.sh/] | >=0.10
X-Code Command Line Tools (OS X only) [https://developer.apple.com/library/ios/technotes/tn2339/_index.html] | >= OS X 10.9
Linux Kernel Headers (Linux only) | >=Linux Kernel 3.13
GNU C Compiler [https://gcc.gnu.org/] (Linux only) | >= 4.8

OS X ships with a very old version of GNU Make, and a package manager like
Homebrew [http://brew.sh/] can be used to install the required version.

It’s also possible to use GCC as the Cgo compiler for OS X or to use Clang on
Linux, but by default Clang is used on OS X and GCC on Linux.

Cross-Compilation

This project’s
Makefile [https://github.com/emccode/libstorage/blob/master/Makefile]
is configured by default to cross-compile certain project components for both
Linux x86_64 and Darwin (OS X) x86_64. Therefore the build process will fail if
the local Go environment is not configured for cross-compilation. Please take a
minute to read this
blog post [http://dave.cheney.net/2015/08/22/cross-compilation-with-go-1-5]
regarding cross-compilation with Go >=1.5.

While some of this project’s components are cross-compiled as part of a
standard build, the project as a whole is not. This is because the project
has key components that are dependent upon the Cgo compiler, and most build
systems do not possess the capability to cross-compile against the C stdlib
tool-chain.

Basic Build

Building from source should be fairly straight-forward as the most basic build
can be achieved by executing make from the project’s root directory.

$ make
make deps
make[1]: Entering directory './github.com/emccode/libstorage'
glide up && touch glide.lock.d
[INFO] Downloading dependencies. Please wait...
[INFO] Fetching updates for github.com/Sirupsen/logrus.
[INFO] Fetching updates for github.com/stretchr/testify.
[INFO] Fetching updates for github.com/akutz/golf.
[INFO] Fetching updates for github.com/akutz/gofig.
[INFO] Fetching updates for github.com/appropriate/go-virtualboxclient.
[INFO] Fetching updates for github.com/jteeuwen/go-bindata.
[INFO] Fetching updates for github.com/emccode/goisilon.
[INFO] Fetching updates for github.com/blang/semver.
[INFO] Fetching updates for github.com/cesanta/validate-json.
[INFO] Fetching updates for github.com/akutz/goof.
[INFO] Fetching updates for github.com/emccode/goscaleio.
[INFO] Fetching updates for github.com/akutz/gotil.
[INFO] Setting version for github.com/Sirupsen/logrus to feature/logrus-aware-types.
[INFO] Setting version for github.com/blang/semver to v3.0.1.
[INFO] Setting version for github.com/jteeuwen/go-bindata to feature/md5checksum.
[INFO] Setting version for github.com/emccode/goscaleio to 53ea76f52205380ab52b9c1f4ad89321c286bb95.
[INFO] Setting version for github.com/emccode/goisilon to f9b53f0aaadb12a26b134830142fc537f492cb13.
[INFO] Setting version for github.com/appropriate/go-virtualboxclient to e0978ab2ed407095400a69d5933958dd260058cd.
[INFO] Resolving imports
[INFO] Setting version for github.com/akutz/goof to master.
[INFO] Setting version for github.com/akutz/gotil to master.
[INFO] Fetching updates for github.com/spf13/pflag.
[INFO] Setting version for github.com/spf13/pflag to b084184666e02084b8ccb9b704bf0d79c466eb1d.
[INFO] Fetching updates for github.com/spf13/viper.
[INFO] Setting version for github.com/spf13/viper to support/rexray.
[INFO] Fetching updates for gopkg.in/yaml.v2.
[INFO] Setting version for gopkg.in/yaml.v2 to b4a9f8c4b84c6c4256d669c649837f1441e4b050.
[INFO] Fetching updates for golang.org/x/sys.
[INFO] Fetching updates for github.com/kardianos/osext.
[INFO] Setting version for github.com/kardianos/osext to master.
[INFO] Fetching updates for golang.org/x/net.
[INFO] Found Godeps.json file in vendor/github.com/stretchr/testify
[INFO] Fetching updates for github.com/davecgh/go-spew.
[INFO] Setting version for github.com/davecgh/go-spew to 5215b55f46b2b919f50a1df0eaa5886afe4e3b3d.
[INFO] Fetching updates for github.com/pmezard/go-difflib.
[INFO] Setting version for github.com/pmezard/go-difflib to d8ed2627bdf02c080bf22230dbb337003b7aba2d.
[INFO] Fetching updates for github.com/asaskevich/govalidator.
[INFO] Fetching updates for github.com/BurntSushi/toml.
[INFO] Fetching updates for github.com/kr/pretty.
[INFO] Fetching updates for github.com/magiconair/properties.
[INFO] Fetching updates for github.com/mitchellh/mapstructure.
[INFO] Fetching updates for github.com/spf13/cast.
[INFO] Fetching updates for github.com/spf13/jwalterweatherman.
[INFO] Fetching updates for gopkg.in/fsnotify.v1.
[INFO] Fetching updates for github.com/kr/text.
[INFO] Downloading dependencies. Please wait...
[INFO] Fetching updates for github.com/gorilla/mux.
[INFO] Fetching updates for github.com/cesanta/ucl.
[INFO] Fetching updates for github.com/gorilla/context.
[INFO] Setting references for remaining imports
[INFO] Project relies on 32 dependencies.
go install github.com/emccode/libstorage/vendor/github.com/jteeuwen/go-bindata/go-bindata
make[1]: Leaving directory './github.com/emccode/libstorage'
make build
make[1]: Entering directory './github.com/emccode/libstorage'
gcc -Wall -pedantic -std=c99 cli/semaphores/open.c -o cli/semaphores/open -lpthread
gcc -Wall -pedantic -std=c99 cli/semaphores/wait.c -o cli/semaphores/wait -lpthread
gcc -Wall -pedantic -std=c99 cli/semaphores/signal.c -o cli/semaphores/signal -lpthread
gcc -Wall -pedantic -std=c99 cli/semaphores/unlink.c -o cli/semaphores/unlink -lpthread
go install ./api/types
go install ./api/context
go install ./api/utils
go install ./api/registry
go install ./api/utils/schema
go install ./api/server/services
go install ./api/server/httputils
go install ./api/server/handlers
go install ./api/utils/paths
go install ./api/utils/config
go install ./api/utils/semaphore
go install ./drivers/storage/isilon
go install ./drivers/storage/isilon/storage
go install ./drivers/storage/scaleio
go install ./drivers/storage/scaleio/storage
go install ./drivers/storage/vbox
go install ./drivers/storage/vbox/storage
go install ./drivers/storage/vfs
go install ./drivers/storage/vfs/storage
go install ./imports/remote
env GOOS=linux GOARCH=amd64 make -j $GOPATH/bin/linux_amd64/lsx-linux
make[2]: Entering directory './github.com/emccode/libstorage'
go install ./api/types
go install ./drivers/storage/isilon
go install ./api/context
go install ./api/utils
go install ./api/registry
go install ./api/utils/config
go install ./drivers/storage/isilon/executor
go install ./drivers/storage/scaleio/executor
go install ./drivers/storage/vbox/executor
go install ./drivers/storage/vfs/executor
go install ./imports/executors
go install ./cli/lsx
go install ./cli/lsx/lsx-linux
make[2]: Leaving directory './github.com/emccode/libstorage'
go install ./imports/config
go install ./drivers/storage/isilon/executor
go install ./drivers/storage/scaleio/executor
go install ./drivers/storage/vbox/executor
go install ./drivers/storage/vfs/executor
go install ./imports/executors
go install ./cli/lsx
go install ./cli/lsx/lsx-darwin
go install github.com/emccode/libstorage/vendor/github.com/jteeuwen/go-bindata/go-bindata
$GOPATH/bin/go-bindata -md5checksum -pkg executors -prefix api/server/executors/bin -o api/server/executors/executors_generated.go api/server/executors/bin/...
go install ./api/server/executors
go install ./api/server/router/executor
go install ./api/server/router/root
go install ./api/server/router/service
go install ./api/utils/filters
go install ./api/server/router/volume
go install ./api/server/router/snapshot
go install ./api/server/router/tasks
go install ./imports/routers
go install ./api/server
go install ./drivers/integration/docker
go install ./drivers/os/darwin
go install ./drivers/os/linux
go install ./api/client
go install ./drivers/storage/libstorage
go install ./drivers/storage/vfs/client
go install ./imports/local
go install ./client
go install .
go install ./api
go install ./api/server/router
go install ./api/tests
go install ./cli/lss
go install ./cli/lss/lss-darwin
go install ./drivers/storage/vbox/client
make -j libstor-c libstor-s
make[2]: Entering directory './github.com/emccode/libstorage'
go build -buildmode=c-shared -o $GOPATH/pkg/darwin_amd64/github.com/emccode/libstorage/c/libstor-c.so ./c/libstor-c
go install ./drivers/storage/isilon/storage
go install github.com/emccode/libstorage/vendor/github.com/jteeuwen/go-bindata/go-bindata
go build -buildmode=c-shared -o $GOPATH/pkg/darwin_amd64/github.com/emccode/libstorage/c/libstor-s.so ./c/libstor-s
gcc -Wall -pedantic -std=c99 -I$GOPATH/src/github.com/emccode/libstorage/c/libstor-c \
 -I$GOPATH/pkg/darwin_amd64/github.com/emccode/libstorage/c/ \
 -L$GOPATH/pkg/darwin_amd64/github.com/emccode/libstorage/c/ \
 -o $GOPATH/bin/libstor-c \
 ./c/libstor-c.c \
 -lstor-c
gcc -Wall -pedantic -std=c99 -I$GOPATH/src/github.com/emccode/libstorage/c \
 -I$GOPATH/pkg/darwin_amd64/github.com/emccode/libstorage/c/ \
 -L$GOPATH/pkg/darwin_amd64/github.com/emccode/libstorage/c/ \
 -o $GOPATH/bin/libstor-s \
 ./c/libstor-s.c \
 -lstor-s
make[2]: Leaving directory './github.com/emccode/libstorage'
make build-lss
make[2]: Entering directory './github.com/emccode/libstorage'
go install ./drivers/storage/isilon/storage
go install github.com/emccode/libstorage/vendor/github.com/jteeuwen/go-bindata/go-bindata
make[2]: Leaving directory './github.com/emccode/libstorage'
make[1]: Leaving directory './github.com/emccode/libstorage'

Version File

There is a file at the root of the project named VERSION. The file contains
a single line with the target version of the project in the file. The version
follows the format:

(?<major>\d+)\.(?<minor>\d+)\.(?<patch>\d+)(-rc\d+)?

For example, during active development of version 0.1.0 the file would
contain the version 0.1.0. When it’s time to create 0.1.0‘s first
release candidate the version in the file will be changed to 0.1.0-rc1. And
when it’s time to release 0.1.0 the version is changed back to 0.1.0.

So what’s the point of the file if it’s basically duplicating the utility of a
tag? Well, the VERSION file in fact has two purposes:

		First and foremost updating the VERSION file with the same value as that
of the tag used to create a release provides a single, contextual reason to
push a commit and tag. Otherwise some random commit off of master would
be tagged as a release candidate or release. Always using the commit that
is related to updating the VERSION file is much cleaner.

		The contents of the VERSION file are also used during the build process
as a means of overriding the output of a git describe. This enables the
semantic version injected into the produced binary to be created using
the targeted version of the next release and not just the value of the
last, tagged commit.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

libStorage [image: GoDoc] [http://godoc.org/github.com/emccode/libstorage] [image: Build Status] [https://travis-ci.org/emccode/libstorage] [image: Go Report Card] [http://goreportcard.com/report/emccode/libstorage] [image: Coverage Status] [https://coveralls.io/github/emccode/libstorage?branch=master]

libStorage provides a vendor agnostic storage orchestration model, API, and
reference client and server implementations.

Overview

libStorage enables storage consumption by leveraging methods commonly
available, locally and/or externally, to an operating system (OS).

The Past

The libStorage project and its architecture represents a culmination of
experience gained from the project authors’ building of
several [https://www.emc.com/cloud-virtualization/virtual-storage-integrator.htm]
different
storage [https://www.emc.com/storage/storage-analytics.htm]
orchestration tools [https://github.com/emccode/rexray]. While created using
different languages and targeting disparate storage platforms, all the tools
were architecturally aligned and embedded functionality directly inside the
tools and affected storage platforms.

This shared design goal enabled tools that natively consumed storage, sans
external dependencies.

The Present

Today libStorage focuses on adding value to container runtimes and storage
orchestration tools such as Docker and Mesos, however the libStorage
framework is available abstractly for more general usage across:

		Operating systems

		Storage platforms

		Hardware platforms

		Virtualization platforms

The client side implementation, focused on operating system activities,
has a minimal set of dependencies in order to avoid a large, runtime footprint.

Storage Orchestration Tools Today

Today there are many storage orchestration and abstraction tools relevant to
to container runtimes. These tools often must be installed locally and run
alongside the container runtime.

[image: Storage Orchestration Tool Architecture Today]

The solid green lines represent active communication paths. The dotted black
lines represent passive paths. The orange volume represents a operating system
device and volume path available to the container runtime.

libStorage Embedded Architecture

Embedding libStorage client and server components enable container
runtimes to communicate directly with storage platforms, the ideal
architecture. This design requires minimal operational dependencies and is
still able to provide volume management for container runtimes.

[image: libStorage Embedded Architecture]

libStorage Centralized Architecture

In a centralized architecture, libStorage is hosted as a service, acting as a
go-between for container runtimes and backend storage platforms.

The libStorage endpoint is advertised by a tool like REX-Ray [https://github.com/emccode/rexray], run from anywhere, and is
responsible for all control plane operations to the storage platform along with
maintaining escalated credentials for these platforms. All client based
processes within the operating system are still embedded in the container
runtime.

[image: libStorage Centralized Architecture]

libStorage Decentralized Architecture

Similar to the centralized architecture, this implementation design involves
running a separate libStorage process alongside each container runtime, across
one or several hosts.

[image: libStorage De-Centralized Architecture]

API

Central to libStorage is the HTTP/JSON API. It defines the control plane
calls that occur between the client and server. While the libStorage package
includes reference implementations of the client and server written using Go,
both the client and server could be written using any language as long as both
adhere to the published libStorage API.

Client

The libStorage client is responsible for discovering a host’s instance ID
and the next, available device name. The client’s reference implementation is
written using Go and is compatible with C++.

The design goal of the client is to be lightweight, portable, and avoid
obsolescence by minimizing dependencies and focusing on deferring as much of
the logic as possible to the server.

Server

The libStorage server implements the libStorage API and is responsible for
coordinating requests between clients and backend orchestration packages. The
server’s reference implementation is also written using Go.

Model

The libStorage model [http://libstorage.rtfd.org/en/latest/user-guide/model/]
defines several data structures that are easily represented using Go structs or
a portable format such as JSON.

Documentation [image: Docs] [http://libstorage.readthedocs.org]

The libStorage documentation is available at
libstorage.rtfd.org [http://libstorage.rtfd.org].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.tls/README.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Example libStorage Config with TLS

libstorage:
 tls:
 serverName: libstorage-server
 clientCertRequired: true
 trustedCertsFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-ca.crt
 service: vfs
 logging:
 httpRequests: true
 httpResponses: true
 client:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.key
 server:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.key
 services:
 vfs:
 libstorage:
 storage:
 driver: vfs
 mock:
 libstorage:
 storage:
 driver: mock

Example REX-Ray Config with TLS

rexray:
 modules:
 default-docker:
 libstorage:
 tls:
 serverName: libstorage-server
 clientCertRequired: true
 trustedCertsFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-ca.crt
 service: vfs
 logging:
 httpRequests: true
 httpResponses: true
 client:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.key
 server:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.key
 services:
 vfs:
 libstorage:
 storage:
 driver: vfs
 mock:
 libstorage:
 storage:
 driver: mock

It’s also possible to disable TLS without removing all the keys. Under the tls key (at any of the known scopes), place disabled: true. For example, here’s the libStorage config with all of the TLS settings, but the server has TLS disabled:

Example libStorage Config with TLS Disabled

libstorage:
 tls:
 serverName: libstorage-server
 clientCertRequired: true
 trustedCertsFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-ca.crt
 service: vfs
 logging:
 httpRequests: true
 httpResponses: true
 client:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.key
 server:
 libstorage:
 tls:
 disabled: true
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.key
 services:
 vfs:
 libstorage:
 storage:
 driver: vfs
 mock:
 libstorage:
 storage:
 driver: mock

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/user-guide/config.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Configuring libStorage

Tweak this, turn that, peek behind the curtain...

Overview

This page reviews how to configure libStorage to suit any environment,
beginning with the the most common use cases, exploring recommended guidelines,
and finally, delving into the details of more advanced settings.

Client/Server Configuration

Except when specified otherwise, the configuration examples below assume the
libStorage client and server exist on the same host. However, that is not at
all a requirement. It is fully possible, and in fact the entire purpose of
libStorage, that the client and server be able to function on different
systems. One libStorage server should be able to support hundreds of clients.
Yet for the sake of completeness, the examples below show both configurations
merged.

When configuring a libStorage client and server for different systems, there
will be a few differences from the examples below:

		The examples show libStorage configured with its server component hosted
on a UNIX socket. This is ideal for when the client/server exist on the same
host as it reduces security risks. However, in most real-world scenarios
the client and server are not residing on the same host, the
libStorage server should use a TCP endpoint so it can be accessed
remotely.

		In a distributed configuration the actual driver configuration sections
need only occur on the server-side. The entire purpose of libStorage‘s
distributed nature is to enable clients without any knowledge of how to
access a storage platform the ability to connect to a remote server that
maintains that storage platform access information.

Basic Configuration

This section outlines the most common configuration scenarios encountered by
libStorage‘s users.

Simple

The first example is a simple libStorage configuration with the VirtualBox
storage driver. The below example omits the host property, but the configuration
is still valid. If the libstorage.host property is not found, the server is
hosted via a temporary UNIX socket file in /var/run/libstorage.

!!! note “note”

Please remember to replace the placeholders in the following examples
with values valid for the systems on which the examples are executed.

The example below specifies the `volumePath` property as
`$HOME/VirtualBox/Volumes`. While the text `$HOME` will be replaced with
the actual value for that environment variable at runtime, the path may
still be invalid. The `volumePath` property should reflect a path on the
system on which the VirtualBox server is running, and that is not always
the same system on which the `libStorage` server is running.

So please, make sure to update the `volumePath` property for the VirtualBox
driver to a path valid on the system on which the VirtualBox server is
running.

The same goes for VirtualBox property `endpoint` as the VirtualBox
web service is not always available at `10.0.2.2:18083`.

libstorage:
 server:
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

TCP

The following example illustrates how to configure a libStorage client and
server running on the same host. The server has one endpoint on which it is
accessible - a single TCP port, 7979, bound to the localhost network interface.

libstorage:
 host: tcp://127.0.0.1:7979
 server:
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

TCP+TLS

The following example illustrates how to configure a libStorage client and
server running on the same host. The server has one endpoint on which it is
accessible - a single TCP port, 7979, bound to all of the host’s network
interfaces. This means that the server is accessible via external clients, not
just those running on the same host.

Because of the public nature of this libStorage server, it is a good idea to
encrypt communications between client and server.

libstorage:
 host: tcp://127.0.0.1:7979
 client:
 tls:
 certFile: $HOME/.libstorage/libstorage-client.crt
 keyFile: $HOME/.libstorage/libstorage-client.key
 trustedCertsFile: $HOME/.libstorage/trusted-certs.crt
 server:
 tls:
 certFile: /etc/libstorage/libstorage-server.crt
 keyFile: /etc/libstorage/libstorage-server.key
 trustedCertsFile: /etc/libstorage/trusted-certs.crt
 clientCertRequired: true
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

Please note that in the above example the property libstorage.client has been
introduced. This property is always present, even if not explicitly specified.
It exists to override libStorage properties for the client only, such as TLS
settings, logging, etc.

UNIX Socket

For the security conscious, there is no safer way to run a client/server setup
on a single system than the option to use a UNIX socket. The socket offloads
authentication and relies on the file system file access to ensure authorized
users can use the libStorage API.

libstorage:
 host: unix:///var/run/libstorage/localhost.sock
 server:
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

It is possible to apply TLS to the UNIX socket. Refer to the TCP+TLS section
for applying TLS to the UNIX sockets.

Multiple Endpoints

There may be occasions when it is desirable to provide multiple ingress vectors
for the libStorage API. In these situations, configuring multiple endpoints
is the solution. The below example illustrates how to configure three endpoints:

endpoint | protocol | address | tls | localhost only
———-|————-|———|—–|———–
sock | unix socket | /var/run/libstorage/localhost.sock | no | yes
private | tcp | 127.0.0.1:7979 | no | yes
public | tcp | *:7980 | yes | no

libstorage:
 host: unix:///var/run/libstorage/localhost.sock
 server:
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA
 endpoints:
 sock:
 address: unix:///var/run/libstorage/localhost.sock
 private:
 address: tcp://127.0.0.1:7979
 public:
 address: tcp://:7980
 tls:
 certFile: /etc/libstorage/libstorage-server.crt
 keyFile: /etc/libstorage/libstorage-server.key
 trustedCertsFile: /etc/libstorage/trusted-certs.crt
 clientCertRequired: true

With all three endpoints defined explicitly in the above example, why leave the
property libstorage.host in the configuration at all? When there are no
endpoints defined, the libStorage server will attempt to create a default
endpoint using the value from the property libstorage.host. However, even
when there’s at least one explicitly defined endpoint, the libstorage.host
property still serves a very important function – it is the property used
by the libStorage client to determine which to which endpoint to connect.

Multiple Services

All of the previous examples have used the VirtualBox storage driver as the
sole measure of how to configure a libStorage service. However, it is possible
to configure many services at the same time in order to provide access to
multiple storage drivers of different types, or even different configurations
of the same driver.

The following example demonstrates how to configure three libStorage services:

service | driver
——–|——–
virtualbox-00 | virtualbox
virtualbox-01 | virtualbox
scaleio | scaleio

Notice how the virtualbox-01 service includes an added integration section.
The integration definition refers to the integration interface and parameters
specific to incoming requests through this layer. In this case we defined
libstorage.server.services.virtualbox-01 with the
integration.volume.create.default.size parameter set. This enables all
create requests that come in through virtualbox-01 to have a default size of
1GB. So although it is technically the same platform below the covers,
virtualbox-00 requests may have different default values than those defined
in virtualbox-01.

libstorage:
 server:
 services:
 virtualbox-00:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes-00
 controllerName: SATA
 virtualbox-01:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes-01
 controllerName: SATA
 integration:
 volume:
 create:
 default:
 size: 1 # GB
 scaleio:
 driver: scaleio
 scaleio:
 endpoint: https://gateway_ip/api
 insecure: true
 userName: username
 password: password
 systemName: tenantName
 protectionDomainName: protectionDomainName
 storagePoolName: storagePoolName

A very important point to make about the relationship between services and
endpoints is that all configured services are available on all endpoints. In
the future this may change, and libStorage may support endpoint-specific
service definitions, but for now if a service is configured, it is accessible
via any of the available endpoint addresses.

Between the three services above, clearly one major difference is that two
services host one driver, VirtualBox, and the third service hosts ScaleIO.
However, why two services for one driver, in this case, VirtualBox? Because,
in addition to services being configured to host different types of drivers,
services can also host different driver configurations. In service
virtualbox-00, the volume path is $HOME/VirtualBox/Volumes-00,
whereas for service virtualbox-01, the volume path is
$HOME/VirtualBox/Volumes-01.

Logging

Sometimes it helps to see a little more, or maybe even a little less,
information in the logs. Configuring logging is quite straight-forward:

libstorage:
 logging:
 level: warn
 server:
 logging:
 level: info
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

The libStorage configuration shown above uses a global log level of warn,
and a more verbose, info log level for just the server.

Advanced Configuration

The following sections detail every last aspect of how libStorage works and can
be configured.

Embedded Configuration

If libStorage is embedded into another application, such as
REX-Ray [https://github.com/emccode/rexray], then that application may
manage its own configuration and supply the embedded libStorage instance
directly with a configuration object. In this scenario, the libStorage
configuration files are ignored in deference to the embedding application.

Data Directories

The first time libStorage is executed it will create several directories if
they do not already exist:

		/etc/libstorage

		/var/log/libstorage

		/var/run/libstorage

		/var/lib/libstorage

The above directories will contain configuration files, logs, PID files, and
mounted volumes. However, the location of these directories can also be
influenced with the environment variable LIBSTORAGE_HOME. All of the above
data directories will be placed in their same paths, but prefixed by the path
specified via LIBSTORAGE_HOME, if LIBSTORAGE_HOME is in fact specified.

Configuration Methods

There are three ways to configure libStorage:

		Command line options

		Environment variables

		Configuration files

The order of the items above is also the order of precedence when considering
options set in multiple locations that may override one another. Values set
via CLI flags have the highest order of precedence, followed by values set by
environment variables, followed, finally, by values set in configuration files.

Configuration Files

There are two libStorage configuration files - global and user:

		/etc/libstorage/config.yml

		$HOME/.libstorage/config.yml

Please note that while the user configuration file is located inside the user’s
home directory, this is the directory of the user that starts libStorage. And
if libStorage is being started as a service, then sudo is likely being used,
which means that $HOME/.libstorage/config.yml won’t point to your home
directory, but rather /root/.libstorage/config.yml.

Configuration Properties

The section Configuration Methods mentions there are
three ways to configure libStorage: config files, environment variables, and the
command line. However, this section will illuminate the relationship between the
names of the configuration file properties, environment variables, and CLI
flags.

Below is a simple configuration file that tells the libStorage client where
the libStorage server is hosted:

libstorage:
 host: tcp://192.168.0.20:7979

The property libstorage.host is a string. This value can also be set via
environment variables or the command line, but to do so requires knowing the
names of the environment variables or CLI flags to use. Luckily those are very
easy to figure out just by knowing the property names.

All properties that might appear in the libStorage configuration file
fall under some type of heading. For example, take the default configuration
above.

The rule for environment variables is as follows:

		Each nested level becomes a part of the environment variable name followed
by an underscore _ except for the terminating part.

		The entire environment variable name is uppercase.

Nested properties follow these rules for CLI flags:

		The root level’s first character is lower-cased with the rest of the root
level’s text left unaltered.

		The remaining levels’ first characters are all upper-cased with the the
remaining text of that level left unaltered.

		All levels are then concatenated together.

The following example builds on the previous. In this case we have added logging
directives to the client instance and reference how their transformation in
the table below the example.

 libstorage:
 host: tcp://192.168.0.20:7979
 logging:
 level: warn
 stdout:
 stderr:
 httpRequests: false
 httpResponses: false

The following table illustrates the transformations:

Property Name | Environment Variable | CLI Flag
————–|———————-|————-
libstorage.host | LIBSTORAGE_HOST | --libstorageHost
libstorage.logging.level | LIBSTORAGE_LOGGING_LEVEL | --libstorageLoggingLevel
libstorage.logging.stdout | LIBSTORAGE_LOGGING_STDOUT | --libstorageLoggingStdout
libstorage.logging.stderr | LIBSTORAGE_LOGGING_STDERR | --libstorageLoggingStderr
libstorage.logging.httpRequests | LIBSTORAGE_LOGGING_HTTPREQUESTS | --libstorageLoggingHttpRequests
libstorage.logging.httpResponses | LIBSTORAGE_LOGGING_HTTPRESPONSES | --libstorageLoggingHttpResponses

Inherited Properties

Referring to the section on defining
Multiple Services, there is also another way
to define the TLS settings for the external TCP endpoint. The same configuration
can be rewritten and simplified in the process:

libstorage:
 integration:
 volume:
 create:
 default:
 size: 1 # GB
 server:
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 controllerName: SATA
 services:
 virtualbox-00:
 driver: virtualbox
 virtualbox:
 volumePath: $HOME/VirtualBox/Volumes-00
 virtualbox-01:
 driver: virtualbox
 virtualbox:
 volumePath: $HOME/VirtualBox/Volumes-01

The above example may look different than the previous one, but it’s actually
the same with a minor tweak in order to simplify configuration.

While there are still two VirtualBox services defined, virtualbox-00 and
virtualbox-01, neither service contains configuration information about the
VirtualBox driver other than the volumePath property. This is because the
change affected above is to take advantage of inherited properties.

When a property is omitted, libStorage traverses the configuration instance
upwards, checking certain, predefined levels known as “scopes” to see if the
property value exists there. All configured services represent a valid
configuration scope as does libstorage.server.

Thus when the VirtualBox driver is initialized and it checks for its properties,
while the driver may only find the volumePath property defined under the
configured service scope, the property access attempt travels up the
configuration stack until it hits the libstorage.server scope where the
remainder of the VirtualBox driver’s properties are defined.

Overriding Inherited Properties

It’s also possible to override inherited properties as is demonstrated in the
Logging configuration example above:

libstorage:
 logging:
 level: warn
 integration:
 volume:
 create:
 default:
 size: 1 # GB
 server:
 logging:
 level: info
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

Note that while the log level is defined at the root of the config, it’s also
defined at libstorage.server.logging.level. The latter value of info
overrides the former value of warn. Also please remember that even had the
latter, server-specific value of info not been defined, an attempt by to
access the log level by the server would be perfectly valid since the attempt
would traverse up the configuration data until it found the log level defined
at the root of the configuration.

Logging Configuration

The libStorage log level determines the level of verbosity emitted by the
internal logger. The default level is warn, but there are three other levels
as well:

Log Level | Description
———–|————-
error | Log only errors
warn | Log errors and anything out of place
info | Log errors, warnings, and workflow messages
debug | Log everything

Driver Configuration

There are three types of drivers:

		OS Drivers

		Storage Drivers

		Integration Drivers

OS Drivers

Operating system (OS) drivers enable libStorage to manage storage on
the underlying OS. Currently the following OS drivers are supported:

Driver | Driver Name
——–|————
Linux | linux

The OS driver linux is automatically activated when libStorage is running on
the Linux OS.

Storage Drivers

Storage drivers enable libStorage to communicate with direct-attached or
remote storage systems. Currently the following storage drivers are supported:

Driver | Driver Name
——–|————
Isilon | isilon
ScaleIO | scaleio
VirtualBox | virtualbox
..more coming|

The libstorage.server.libstorage.storage.driver property can be used to
activate a storage drivers. That is not a typo; the libstorage key is repeated
beneath libstorage.server. This is because configuration property paths are
absolute, and when nested under an architectural component, such as
libstorage.server, the entire key path must be replicated.

That said, and this may seem to contradict the last point, the storage driver
property is valid only on the server. Well, not really. Internally the
libStorage client uses the same configuration property to denote its own
storage driver. This internal storage driver is actually how the libStorage
client communicates with the libStorage server.

Integration Drivers

Integration drivers enable libStorage to integrate with schedulers and other
storage consumers, such as Docker or Mesos. Currently the following
integration drivers are supported:

Driver | Driver Name
——–|————
Docker | docker

The integration driver docker provides necessary functionality to enable
most consuming platforms to work with storage volumes.

Volume Configuration

This section describes various global configuration options related to an
integration driver’s volume operations, such as mounting and unmounting volumes.

Volume Properties

The properties listed below are the global properties valid for an integration
driver’s volume-related properties.

parameter|description
———|———–
libstorage.integration.volume.mount.preempt|Forcefully take control of volumes when requested
libstorage.integration.volume.mount.path|The default host path for mounting volumes
libstorage.integration.volume.mount.rootPath|The path within the volume to return to the integrator (ex. /data)
libstorage.integration.volume.create.disable|Disable the ability for a volume to be created
libstorage.integration.volume.remove.disable|Disable the ability for a volume to be removed

The properties in the next table are the configurable parameters that affect
the default values for volume creation requests.

parameter|description
———|———–
libstorage.integration.volume.create.default.size|Size in GB
libstorage.integration.volume.create.default.iops|IOPS
libstorage.integration.volume.create.default.type|Type of Volume or Storage Pool
libstorage.integration.volume.create.default.fsType|Type of filesystem for new volumes (ext4/xfs)
libstorage.integration.volume.create.default.availabilityZone|Extensible parameter per storage driver

Disable Create

The disable create feature enables you to disallow any volume creation activity.
Any requests will be returned in a successful manner, but the create will not
get passed to the backend storage platform.

libstorage:
 integration:
 volume:
 create:
 disable: true

Disable Remove

The disable remove feature enables you to disallow any volume removal activity.
Any requests will be returned in a successful manner, but the remove will not
get passed to the backend storage platform.

libstorage:
 integration:
 volume:
 remove:
 disable: true

Preemption

There is a capability to preemptively detach any existing attachments to other
instances before attempting a mount. This will enable use cases for
availability where another instance must be able to take control of a volume
without the current owner instance being involved. The operation is considered
equivalent to a power off of the existing instance for the device.

Example configuration file follows:

libstorage:
 integration:
 volume:
 mount:
 preempt: true

Driver|Supported
——|———
Isilon|Not yet
ScaleIO|Yes
VirtualBox|Yes

Ignore Used Count

By default accounting takes place during operations that are performed
on Mount, Unmount, and other operations. This only has impact when running
as a service through the HTTP/JSON interface since the counts are persisted
in memory. The purpose of respecting the Used Count is to ensure that a
volume is not unmounted until the unmount requests have equaled the mount
requests.

In the Docker use case if there are multiple containers sharing a volume
on the same host, the the volume will not be unmounted until the last container
is stopped.

The following setting should only be used if you wish to disable this
functionality. This would make sense if the accounting is being done from
higher layers and all unmount operations should proceed without control.

libstorage:
 integration:
 volume:
 unmount:
 ignoreUsedCount: true

Currently a reset of the service will cause the counts to be reset. This
will cause issues if multiple containers are sharing a volume. If you are
sharing volumes, it is recommended that you reset the service along with the
accompanying container runtime (if this setting is false) to ensure they are
synchronized.

Volume Path Disable Cache

In order to minimize the impact to return Path requests, a caching
capability has been introduced by default. A List request will cause the
returned volumes and paths to be evaluated and those with active mounts are
recorded. Subsequent Path requests for volumes that have no recorded mounts
will not result in active path lookups. Once the mount counter is initialized or
a List operation occurs where a mount is recorded, the volume will be looked
up for future Path operations.

libstorage:
 integration:
 volume:
 path:
 disableCache: true

Volume Root Path

When volumes are mounted there can be an additional path that is specified to
be created and passed as the valid mount point. This is required for certain
applications that do not want to place data from the root of a mount point.

The default is the /data path. If a value is set by
linux.integration.volume.mount.rootPath, then the default will be overwritten.

libstorage:
 integration:
 volume:
 mount:
 rootPath: /data

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/user-guide/schedulers.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Schedulers

Scheduling storage one resource at a time...

Overview

This page reviews the scheduling systems supported by libStorage.

Docker

libStorage‘s ‘Docker Integration Driver is compatible with 1.10+.

However, Docker 1.10.2+ is suggested if volumes are shared between containers
or interactive volume inspection requests are desired via the /volumes,
/volumes/{service}, and /volumes/{service}/{volumeID} resources.

Please note that this is not the same as
Docker’s Volume Plug-in [https://docs.docker.com/engine/extend/plugins_volume/].
libStorage does not provide a way to expose the Docker Integration Driver
via the Docker Volume Plug-in, but REX-Ray, which embeds libStorage,
does.

Example Configuration

Below is an example config.yml that can be used. The volume.mount.preempt
is an optional parameter here which enables any host to take control of a
volume irrespective of whether other hosts are using the volume. If this is
set to false then plugins should ensure safety first by locking the
volume from to the current owner host. We also specify docker.size which will
create all new volumes at the specified size in GB.

libstorage:
 host: unix:///var/run/libstorage/localhost.sock
 integration:
 volume:
 mount:
 preempt: true
 create:
 default:
 size: 1 # GB
 server:
 endpoints:
 localhost:
 address: unix:///var/run/libstorage/localhost.sock
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

Configuration Properties

The Docker integration driver adheres to the properties described in the
section on an
Integration driver’s volume-related properties.

Please note that with Docker 1.9.1 or below, it is recommended that the
property libstorage.integration.volume.remove.disable be set to true in
order to prevent Docker from removing external volumes in-use by containers
that are forcefully removed.

Caveats

If you restart the process which embeds libStorage and hosts the
Docker Volume Plug-in while volumes are shared between Docker containers,
then problems may arise when stopping one of the containers sharing the volume.

It is suggested to avoid stopping these containers at this point until all
containers sharing the volumes can be stopped. This will enable the unmount
process to proceed cleanly.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/dev-guide/project-guidelines.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Project Guidelines

These are important.

People contributing code to this project must adhere to the following rules.
These standards are in place to keep code clean, consistent, and stable.

Documentation

There are two types of documentation: source and markdown.

Source Code

All source code should be documented in accordance with the
Go’s documentation rules [http://blog.golang.org/godoc-documenting-go-code].

Markdown

When creating or modifying the project’s README.md file or any of the
documentation in the .docs directory, please keep the following rules in
mind:

		All links to internal resources should be relative.

		All links to markdown files should include the file extension.

For example, the below link points to the anchor basic-configuration on the
Configuration page:

/user-guide/config#basic-configuration

However, when the above link is followed when viewing this page directly from
the Github repository instead of the generated site documentation, the link
will return a 404.

While it’s recommended that users view the generated site documentation instead
of the source Markdown directly, we can still fix it so that the above link
will work regardless. To fix the link, simply make it relative and add the
Markdown file extension:

../user-guide/config.md#basic-configuration

Now the link will work regardless from where it’s viewed.

Style & Syntax

All source files should be processed by the
gometalinter [https://github.com/alecthomas/gometalinter] before committed. Any
errors or warnings produced by the tools should be corrected before the source
is committed.

If Atom [https://atom.io/] is your IDE of choice, install the
go-plus [https://atom.io/packages/go-plus] package, and it will execute the
gometalinter every time a source file is saved.

In lieu of using Atom as the IDE, the project’s Makefile automatically
executes the above tools as part of the build process and will fail the build
if problems are discovered.

Code Coverage

All new work submitted to the project should have associated tests where
applicable. If there is ever a question of whether or not a test is applicable
then the answer is likely yes.

This project uses
Codecov [https://codecov.io/github/emccode/libstorage] for code coverage, and
all pull requests are processed just as a build from master. If a pull request
decreases the project’s code coverage, the pull request will be declined until
such time that testing is added or enhanced to compensate.

Commit Messages

Commit messages should follow the guide 5 Useful Tips For a Better Commit
Message [https://robots.thoughtbot.com/5-useful-tips-for-a-better-commit-message].
The two primary rules to which to adhere are:

		Commit message subjects should not exceed 50 characters in total and
should be followed by a blank line.

		The commit message’s body should not have a width that exceeds 72
characters.

For example, the following commit has a very useful message that is succinct
without losing utility.

commit e80c696939a03f26cd180934ba642a729b0d2941
Author: akutz <sakutz@gmail.com>
Date: Tue Oct 20 23:47:36 2015 -0500

 Added --format,-f option for CLI

 This patch adds the flag '--format' or '-f' for the
 following CLI commands:

 * adapter instances
 * device [get]
 * snapshot [get]
 * snapshot copy
 * snapshot create
 * volume [get]
 * volume attach
 * volume create
 * volume map
 * volume mount
 * volume path

 The user can specify either '--format=yml|yaml|json' or
 '-f yml|yaml|json' in order to influence how the resulting,
 structured data is marshaled prior to being emitted to the console.

Please note that the output above is the full output for viewing a commit.
However, because the above message adheres to the commit message rules, it’s
quite easy to show just the commit’s subject:

$ git show e80c696939a03f26cd180934ba642a729b0d2941 --format="%s" -s
Added --format,-f option for CLI

It’s also equally simple to print the commit’s subject and body together:

$ git show e80c696939a03f26cd180934ba642a729b0d2941 --format="%s%n%n%b" -s
Added --format,-f option for CLI

This patch adds the flag '--format' or '-f' for the
following CLI commands:

 * adapter instances
 * device [get]
 * snapshot [get]
 * snapshot copy
 * snapshot create
 * volume [get]
 * volume attach
 * volume create
 * volume map
 * volume mount
 * volume path

The user can specify either '--format=yml|yaml|json' or
'-f yml|yaml|json' in order to influence how the resulting,
structured data is marshaled prior to being emitted to the console.

Submitting Changes

All developers are required to follow the
GitHub Flow model [https://guides.github.com/introduction/flow/] when
proposing new features or even submitting fixes.

Please note that although not explicitly stated in the referenced GitHub Flow
model, all work should occur on a fork of this project, not from within a
branch of this project itself.

Pull requests submitted to this project should adhere to the following
guidelines:

		Branches should be rebased off of the upstream master prior to being
opened as pull requests and again prior to merge. This is to ensure that
the build system accounts for any changes that may only be detected during
the build and test phase.

		Unless granted an exception a pull request should contain only a single
commit. This is because features and patches should be atomic – wholly
shippable items that are either included in a release, or not. Please
squash commits on a branch before opening a pull request. It is not a
deal-breaker otherwise, but please be prepared to add a comment or
explanation as to why you feel multiple commits are required.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/dev-guide/release-process.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Release Process

How to release libStorage

Project Stages

This project has three parallels stages of release:

Name | Description
—–|————
unstable | The tip or HEAD of the master branch is referred to as unstable
staged | A commit tagged with the suffix -rc\d+ such as v0.1.0-rc2 is a staged release. These are release candidates.
stable | A commit tagged with a version sans -rc\d+ suffix such as v0.1.0 is a stable release.

There are no steps necessary to create an unstable release as that happens
automatically whenever an untagged commit is pushed to master. However, the
following workflow should be used when tagging a staged release candidate
or stable release.

		Review outstanding issues & pull requests

		Prepare release notes

		Update the version file

		Commit & pull request

		Tag the release

		Update the version file (again)

Review Issues & Pull Requests

The first step to a release is to review the outstanding
issues [https://github.com/emccode/libstorage/issues] and
pull requests [https://github.com/emccode/libstorage/pulls] that are tagged
for the release in question.

If there are outstanding issues requiring changes or pending pull requests to
be merged, handle those prior to tagging any commit as a release candidate or
release.

It is highly recommended that pull requests be merged synchronously after
rebasing each subsequent one off of the new tip of master. Remember, while
GitHub will update a pull request as in conflict if a change to master
results in a merge conflict with the pull request, GitHub will not force a
new build to spawn unless the pull request is actually updated.

At the very minimum a pull request’s build should be re-executed prior to the
pull request being merged if master has changed since the pull request was
opened.

Prepare Release Notes

Update the release notes at .docs/about/release-notes.md. This file is
project’s authoritative changelog and should reflect new features, fixes, and
any significant changes.

The most recent, stable version of the release notes are always available
online at
libStorage’s documentation site [http://libstorage.rtfd.org/en/stable/about/release-notes/].

Update Version File

The VERSION file exists at the root of the project and should be updated to
reflect the value of the intended release.

For example, if creating the first release candidate for version 0.1.0, the
contents of the VERSION file should be a single line 0.1.0-rc1 followed by
a newline character:

$ cat VERSION
0.1.0-rc1

If releasing version 0.1.0 proper then the contents of the VERSION file
should be 0.1.0 followed by a newline character:

$ cat VERSION
0.1.0

Commit & Pull Request

Once all outstanding issues and pull requests are handled, the release notes
and version are updated, it’s time to create a commit.

Please make sure that the changes to the release notes and version files are
a part of the same commit. This makes identifying the aspects of a release,
staged or otherwise, far easier for future developers.

A release’s commit message can either be a reflection of the release notes or
something simple. Either way the commit message should have the following
subject format and first line in its body:

Release (Candidate) v0.1.0-rc1

This patch bumps the version to v0.1.0-rc1.

If the commit message is longer it should simply reflect the same information
from the release notes.

Once committed push the change to a fork and open a pull request. Even though
this commit marks a staged or official release, the pull request system is still
used to assure that the build completes successfully and there are no unforeseen
errors.

Tag the Release

Once the pull request marking the staged or stable release has been merged
into upstream‘s master it’s time to tag the release.

Tag Format

The release tag should follow a prescribed format depending upon the release
type:

Release Type | Tag Format | Example
——–|———|———
staged | vMAJOR.MINOR.PATCH-rc[0-9] | v0.1.0-rc1
stable | vMAJOR.MINOR-PATCH | v0.1.0

Tag Methods

There are two ways to tag a release:

		GitHub Releases [https://github.com/emccode/libstorage/releases/new]

		Command Line

Command Line

If tagging a release via the command line be sure to fetch the latest changes
from upstream‘s master and either merge them into your local copy of
master or reset the local copy to reflect upstream prior to creating
any tags.

The following combination of commands can be used to create a tag for
0.1.0 Release Candidate 1:

git fetch upstream && \
 git checkout master && \
 git reset --hard upstream/master && \
 git tag -a -m v0.1.0-rc1 v0.1.0-rc1

The above example combines a few operations:

		The first command fetches the upstream changes

		The local master branch is checked out

		The local master branch is hard reset to upstream/master

		An annotated tag is created on master for v0.1.0-rc1, or 0.1.0 Release
Candidate 1, with a tag message of v0.1.0-rc1.

Please note that the third step will erase any changes that exist only in the
local master branch that do not also exist in the remote, upstream copy.
However, if the two branches are not equal this method should not be used to
create a tag anyway.

The above steps do not actually push the tag upstream. This is to allow for one
final review of all the changes before doing so since the appearance of a new,
annotated tag in the repository will cause the project’s build system to
automatically kick off a build that will result in the release of a staged or
stable release. For stable releases the project’s documentation will also be
updated.

Once positive everything looks good simply execute the following command to
push the tag to the upstream repository:

git push upstream v0.1.0-rc1

Update Version File (Again)

After a release is tagged there is one final step involving the VERSION file.
The contents of the file should be updated to reflect the next, targeted release
so that the produced artifacts reflect the targeted version value and not a
value based on the last, tagged commit.

Following the above examples where version v0.1.0-rc1 was just staged, the
VERSION file should be updated to indicate that 0.1.0 Release Candidate 2
(0.1.0-rc2) is the next, targeted release:

$ cat VERSION
0.1.0-rc2

Commit the change to the VERSION file with a commit message similar to the
following:

Bumped active dev version to v0.1.0-rc2

This patch bumps the active dev version to v0.1.0-rc2.

Once the VERSION file change is committed, push the change and open a pull
request to merge into the project.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/user-guide/storage-providers.html

 Navigation

 		
 index

 		libstorage-akutz latest documentation »

Storage Providers

Connecting storage and platforms...

Overview

This page reviews the storage providers and platforms supported by libStorage.

Client/Server Configuration

Regarding the examples below, please
read the provision about
client/server configurations before proceeding.

Isilon

The Isilon driver registers a storage driver named isilon with the
libStorage driver manager and is used to connect and manage Isilon NAS
storage. The driver creates logical volumes in directories on the Isilon
cluster. Volumes are exported via NFS and restricted to a single client at a
time. Quotas can also be used to ensure that a volume directory doesn’t exceed
a specified size.

Configuration

The following is an example configuration of the Isilon driver.

isilon:
 endpoint: https://endpoint:8080
 insecure: true
 username: username
 group: groupname
 password: password
 volumePath: /libstorage
 nfsHost: nfsHost
 dataSubnet: subnet
 quotas: true

For information on the equivalent environment variable and CLI flag names
please see the section on how configuration properties are
transformed.

Extra Parameters

The following items are configurable specific to this driver.

		volumePath represents the location under /ifs/volumes to allow volumes to
be created and removed.

		nfsHost is the configurable host used when mounting exports

		dataSubnet is the subnet the REX-Ray driver is running on

Optional Parameters

The following items are not required, but available to this driver.

		insecure defaults to false.

		group defaults to the group of the user specified in the configuration.
Only use this option if you need volumes to be created with a different
group.

		volumePath defaults to “”. This will have all new volumes created directly
under /ifs/volumes.

		quotas defaults to false. Set to true if you have a SmartQuotas
license enabled.

Activating the Driver

To activate the Isilon driver please follow the instructions for
activating storage drivers,
using isilon as the driver name.

Examples

Below is a full config.yml file that works with Isilon.

libstorage:
 server:
 services:
 isilon:
 driver: isilon
 isilon:
 endpoint: https://endpoint:8080
 insecure: true
 username: username
 password: password
 volumePath: /libstorage
 nfsHost: nfsHost
 dataSubnet: subnet
 quotas: true

Instructions

It is expected that the volumePath exists already within the Isilon system.
This example would reflect a directory create under /ifs/volumes/libstorage
for created volumes. It is not necessary to export this volume. The dataSubnet
parameter is required so the Isilon driver can restrict access to attached
volumes to the host that REX-Ray is running on.

If quotas are enabled, a SmartQuotas license must also be enabled on the
Isilon cluster for the capacity size functionality of libStorage to work.

A SnapshotIQ license must be enabled on the Isilon cluster for the snapshot
functionality of libStorage to work.

Caveats

The Isilon driver is not without its caveats:

		The account used to access the Isilon cluster must be in a role with the
following privileges:
		Namespace Access (ISI_PRIV_NS_IFS_ACCESS)

		Platform API (ISI_PRIV_LOGIN_PAPI)

		NFS (ISI_PRIV_NFS)

		Restore (ISI_PRIV_IFS_RESTORE)

		Quota (ISI_PRIV_QUOTA) (if quotas are enabled)

		Snapshot (ISI_PRIV_SNAPSHOT) (if snapshots are used)

ScaleIO

The ScaleIO driver registers a storage driver named scaleio with the
libStorage driver manager and is used to connect and manage ScaleIO storage.

Requirements

		The ScaleIO REST Gateway is required for the driver to function.

		The libStorage client or application that embeds the libStorage client
must reside on a host that has the SDC client installed. The command
/opt/emc/scaleio/sdc/bin/drv_cfg --query_guid should be executable and
should return the local SDC GUID.

Configuration

The following is an example with all possible fields configured. For a running
example see the Examples section.

scaleio:
 endpoint: https://host_ip/api
 apiVersion: "2.0"
 insecure: false
 useCerts: true
 userName: admin
 password: mypassword
 systemID: 0
 systemName: sysv
 protectionDomainID: 0
 protectionDomainName: corp
 storagePoolID: 0
 storagePoolName: gold
 thinOrThick: ThinProvisioned

Configuration Notes

		The apiVersion can optionally be set here to force certain API behavior.
The default is to retrieve the endpoint API, and pass this version during calls.

		insecure should be set to true if you have not loaded the SSL
certificates on the host. A successful wget or curl should be possible without
SSL errors to the API endpoint in this case.

		useCerts should only be set if you want to leverage the internal SSL
certificates. This would be useful if you are deploying the REX-Ray binary
on a host that does not have any certificates installed.

		systemID takes priority over systemName.

		protectionDomainID takes priority over protectionDomainName.

		storagePoolID takes priority over storagePoolName.

		thinkOrThick determines whether to provision as the default
ThinProvisioned, or ThickProvisioned.

For information on the equivalent environment variable and CLI flag names
please see the section on how non top-level configuration properties are
transformed.

Runtime Behavior

The storageType field that is configured per volume is considered the
ScaleIO Storage Pool. This can be configured by default with the storagePool
setting. It is important that you create unique names for your Storage Pools
on the same ScaleIO platform. Otherwise, when specifying storageType it
may choose at random which protectionDomain the pool comes from.

The availabilityZone field represents the ScaleIO Protection Domain.

Configuring the Gateway

		Install the EMC-ScaleIO-gateway package.

		Edit the
/opt/emc/scaleio/gateway/webapps/ROOT/WEB-INF/classes/gatewayUser.properties
file and append the proper MDM IP addresses to the following mdm.ip.addresses=
parameter.

		By default the password is the same as your administrative MDM password.

		Start the gateway service scaleio-gateway start.

		With 1.32 we have noticed a restart of the gateway may be necessary as well
after an initial install with service scaleio-gateway restart.

Activating the Driver

To activate the ScaleIO driver please follow the instructions for
activating storage drivers,
using scaleio as the driver name.

Troubleshooting

		Verify your parameters for system, protectionDomain, and
storagePool are correct.

		Verify that have the ScaleIO SDC service installed with
rpm -qa EMC-ScaleIO-sdc

		Verify that the following command returns the local SDC GUID
/opt/emc/scaleio/sdc/bin/drv_cfg --query_guid.

		Ensure that you are able to open a TCP connection to the gateway with the
address that you will be supplying below in the gateway_ip parameter. For
example telnet gateway_ip 443 should open a successful connection. Removing
the EMC-ScaleIO-gateway package and reinstalling can force re-creation of
self-signed certs which may help resolve gateway problems. Also try restarting
the gateway with service scaleio-gateway restart.

		Ensure that you have the correct authentication credentials for the gateway.
This can be done with a curl login. You should receive an authentication
token in return.
curl --insecure --user admin:XScaleio123 https://gw_ip:443/api/login

Examples

Below is a full config.yml file that works with ScaleIO.

libstorage:
 server:
 services:
 scaleio:
 driver: scaleio
 scaleio:
 endpoint: https://gateway_ip/api
 insecure: true
 userName: username
 password: password
 systemName: tenantName
 protectionDomainName: protectionDomainName
 storagePoolName: storagePoolName

VirtualBox

The VirtualBox driver registers a storage driver named virtualbox with the
libStorage driver manager and is used by VirtualBox’s VMs to connect and
manage volumes provided by VirtualBox.

Prerequisites

In order to leverage the virtualbox driver, the libStorage client or must
be located on each VM that you wish to be able to consume external volumes.
The driver leverages the vboxwebserv HTTP SOAP API which is a process that
must be started from the VirtualBox host (ie OS X) using
vboxwebsrv -H 0.0.0.0 -v or additionally with -b for running in the
background. This allows the VMs running libStorage to remotely make calls to
the underlying VirtualBox application. A test for connectivity can be done with
telnet virtualboxip 18083 from the VM. The virtualboxip is what you
would put in the endpoint value.

Leveraging authentication for the VirtualBox webserver is optiona.. The HTTP
SOAP API can have authentication disabled by running
VBoxManage setproperty websrvauthlibrary null.

Hot-Plugging is required, which limits the usefulness of this driver to SATA
only. Ensure that your VM has pre-created this controller and it is
named SATA. Otherwise the controllerName field must be populated
with the name of the controller you wish to use. The port count must be set
manually as it cannot be increased when the VMs are on. A count of 30
is suggested.

VirtualBox 5.0.10+ must be used.

Configuration

The following is an example configuration of the VirtualBox driver.The localMachineNameOrId parameter is for development use where you force
libStorage to use a specific VM identity. Choose a volumePath to store the
volume files or virtual disks. This path should be created ahead of time.

virtualbox:
 endpoint: http://virtualboxhost:18083
 userName: optional
 password: optional
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: name
 localMachineNameOrId: forDevelopmentUse

For information on the equivalent environment variable and CLI flag names
please see the section on how non top-level configuration properties are
transformed.

Activating the Driver

To activate the VirtualBox driver please follow the instructions for
activating storage drivers,
using virtualbox as the driver name.

Examples

Below is a working config.yml file that works with VirtualBox.

libstorage:
 server:
 services:
 virtualbox:
 driver: virtualbox
 virtualbox:
 endpoint: http://10.0.2.2:18083
 tls: false
 volumePath: $HOME/VirtualBox/Volumes
 controllerName: SATA

Caveats

		Snapshot and create volume from volume functionality is not available yet
with this driver.

		The driver supports VirtualBox 5.0.10+

 © Copyright 2016.
 Created using Sphinx 1.3.5.

