

 Navigation

 	
 index

 	libstorage-akutz stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/libstorage-akutz/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/libstorage-akutz/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	libstorage-akutz stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

.docs/index.html

 Navigation

 		
 index

 		libstorage-akutz stable documentation »

LibStorage

Opening up storage for all

Overview

LibStorage provides a vendor agnostic storage orchestration model,
API, and reference client and server implementations.

Getting Started

Using LibStorage can be broken down into several, distinct steps:

		Understanding the LibStorage model

		Understanding the LibStorage API

		Identifying a server implementation such as
REX-Ray [https://rexray.rtfd.org]

Getting Help

To get help with LibStorage, please use the
discussion group [https://groups.google.com/forum/#!forum/emccode-users],
GitHub issues [https://github.com/emccode/libstorage/issues], or tagging
questions with EMC at StackOverflow [https://stackoverflow.com].

The code and documentation are released with no warranties or SLAs and are
intended to be supported through a community driven process.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/about/license.html

 Navigation

 		
 index

 		libstorage-akutz stable documentation »

Licensing

The legal stuff

LibStorage License

Licensed under the Apache License, Version 2.0 (the “License”); you may not use
this file except in compliance with the License. You may obtain a copy of the
License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		libstorage-akutz stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.docs/about/contributing.html

 Navigation

 		
 index

 		libstorage-akutz stable documentation »

Contributing to LibStorage

An introduction to contributing to the LibStorage project

The LibStorage project welcomes, and depends, on contributions from developers
and users in the open source community. Contributions can be made in a number of
ways, a few examples are:

		Code patches via pull requests

		Documentation improvements

		Bug reports and patch reviews

Reporting an Issue

Please include as much detail as you can. This includes:

		The OS type and version

		The LibStorage commit

		The storage system in question

		A set of logs with debug-logging enabled that show the problem

Submitting Pull Requests

Once you are happy with your changes or you are ready for some feedback, push
it to your fork and send a pull request. For a change to be accepted it will
most likely need to have tests and documentation if it is a new feature.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		libstorage-akutz stable documentation »

libStorage [image: GoDoc] [http://godoc.org/github.com/emccode/libstorage] [image: Build Status] [https://travis-ci.org/emccode/libstorage] [image: Go Report Card] [http://goreportcard.com/report/emccode/libstorage] [image: Coverage Status] [https://coveralls.io/github/emccode/libstorage?branch=master]

libStorage provides a vendor agnostic storage orchestration model, API, and
reference client and server implementations.

Overview

libStorage enables storage consumption by leveraging methods commonly
available, locally and/or externally, to an operating system (OS).

The Past

The libStorage project and its architecture represents a culmination of
experience gained from the project authors’ building of
several [https://www.emc.com/cloud-virtualization/virtual-storage-integrator.htm]
different
storage [https://www.emc.com/storage/storage-analytics.htm]
orchestration tools [https://github.com/emccode/rexray]. While created using
different languages and targeting disparate storage platforms, all the tools
were architecturally aligned and embedded functionality directly inside the
tools and affected storage platforms.

This shared design goal enabled tools that natively consumed storage, sans
external dependencies.

The Present

Today libStorage focuses on adding value to container runtimes and storage
orchestration tools such as Docker and Mesos, however the libStorage
framework is available abstractly for more general usage across:

		Operating systems

		Storage platforms

		Hardware platforms

		Virtualization platforms

The client side implementation, focused on operating system activities,
has a minimal set of dependencies in order to avoid a large, runtime footprint.

Storage Orchestration Tools Today

Today there are many storage orchestration and abstraction tools relevant to
to container runtimes. These tools often must be installed locally and run
alongside the container runtime.

[image: Storage Orchestration Tool Architecture Today]

The solid green lines represent active communication paths. The dotted black
lines represent passive paths. The orange volume represents a operating system
device and volume path available to the container runtime.

libStorage Embedded Architecture

Embedding libStorage client and server components enable container
runtimes to communicate directly with storage platforms, the ideal
architecture. This design requires minimal operational dependencies and is
still able to provide volume management for container runtimes.

[image: libStorage Embedded Architecture]

libStorage Centralized Architecture

In a centralized architecture, libStorage is hosted as a service, acting as a
go-between for container runtimes and backend storage platforms.

The libStorage endpoint is advertised by a tool like REX-Ray [https://github.com/emccode/rexray], run from anywhere, and is
responsible for all control plane operations to the storage platform along with
maintaining escalated credentials for these platforms. All client based
processes within the operating system are still embedded in the container
runtime.

[image: libStorage Centralized Architecture]

libStorage Decentralized Architecture

Similar to the centralized architecture, this implementation design involves
running a separate libStorage process alongside each container runtime, across
one or several hosts.

[image: libStorage De-Centralized Architecture]

API

Central to libStorage is the HTTP/JSON API. It defines the control plane
calls that occur between the client and server. While the libStorage package
includes reference implementations of the client and server written using Go,
both the client and server could be written using any language as long as both
adhere to the published libStorage API.

Client

The libStorage client is responsible for discovering a host’s instance ID
and the next, available device name. The client’s reference implementation is
written using Go and is compatible with C++.

The design goal of the client is to be lightweight, portable, and avoid
obsolescence by minimizing dependencies and focusing on deferring as much of
the logic as possible to the server.

Server

The libStorage server implements the libStorage API and is responsible for
coordinating requests between clients and backend orchestration packages. The
server’s reference implementation is also written using Go.

Model

The libStorage model [http://libstorage.rtfd.org/en/latest/user-guide/model/]
defines several data structures that are easily represented using Go structs or
a portable format such as JSON.

Documentation [image: Docs] [http://libstorage.readthedocs.org]

The libStorage documentation is available at
libstorage.rtfd.org [http://libstorage.rtfd.org].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/architecture-embeddedlibstorage.png
CONTAINER RUNTIME

CONTAINER RUNTIME

LIBSTORAGE CLIENT

LIBSTORAGE CLIENT

OPERATING
SYSTEM

LIBSTORAGE SERVER

STORAGE

J

LATFORM

LIBSTORAGE API

_static/up.png

_images/architecture-decentralized.png
CONTAINER RUNTIME

CONTAINER RUNTIME

OPERATING
SYSTEM

LIBSTORAGE CLIENT LIBSTORAGE CLIENT
—==
- \
s RY]
LIBSTORAGE SERVER LIBSTORAGE SERVER

DECENTRALIZED
STORAGE
ORCHESTRATION
TOOL

STORAGE

PLATFORM

HETEROGENEOUS
STORAGE API

.docs/user-guide/model.html

 Navigation

 		
 index

 		libstorage-akutz stable documentation »

The LibStorage Model

Friendly, portable, powerful

InstanceID

An instance ID identifies a host to a remote storage platform.

Go

type InstanceID struct {
 // ID is the instance ID
 ID string `json:"id"`

 // Metadata is any extra information about the instance ID.
 Metadata interface{} `json:"metadata"`
}

JSON

{
 "id": "",
 "metadata": {}
}

Instance

The instance provides information about a storage object.

Go

type Instance struct {
 // The ID of the instance to which the object is connected.
 InstanceID *InstanceID `json:"instanceID"`

 // The name of the instance.
 Name string `json:"name"`

 // The name of the provider that owns the object.
 ProviderName string `json:"providerName"`

 // The region from which the object originates.
 Region string `json:"region"`
}

JSON

{
 "instanceID": {
 "id": "",
 "metadata": {}
 },
 "name": "",
 "providerName": "",
 "region": ""
}

BlockDevice

A block device provides information about a block-storage device.

Go

type BlockDevice struct {

 // The name of the device.
 DeviceName string `json:"deviceName"`

 // The ID of the instance to which the device is connected.
 InstanceID *InstanceID `json:"instanceID"`

 // The name of the network on which the device resides.
 NetworkName string `json:"networkName"`

 // The name of the provider that owns the block device.
 ProviderName string `json:"providerName"`

 // The region from which the device originates.
 Region string `json:"region"`

 // The device status.
 Status string `json:"status"`

 // The ID of the volume for which the device is mounted.
 VolumeID string `json:"volumeID"`
}

JSON

{
 "deviceName": "",
 "instanceID": {
 "id": "",
 "metadata": {}
 },
 "networkName": "",
 "providerName": "",
 "region": "",
 "status": "",
 "volumeID": ""
}

Snapshot

A snapshot provides information about a storage-layer snapshot.

Go

type Snapshot struct {
 // A description of the snapshot.
 Description string `json:"description"`

 // The name of the snapshot.
 Name string `json:"name"`

 // The snapshot's ID.
 SnapshotID string `json:"snapshotID"`

 // The time at which the request to create the snapshot was submitted.
 StartTime string `json:"startTime"`

 // The status of the snapshot.
 Status string `json:"status"`

 // The ID of the volume to which the snapshot belongs.
 VolumeID string `json:"volumeID"`

 // The size of the volume to which the snapshot belongs.
 VolumeSize string `json:"volumeSize"`
}

JSON

{
 "description": "",
 "name": "",
 "snapshotID": "",
 "startTime": "",
 "status": "",
 "volumeID": "",
 "volumeSize": ""
}

Volume

A volume provides information about a storage volume.

Go

type Volume struct {
 // The volume's attachments.
 Attachments []*VolumeAttachment `json:"attachments"`

 // The availability zone for which the volume is available.
 AvailabilityZone string `json:"availabilityZone"`

 // The volume IOPs.
 IOPS int64 `json:"iops"`

 // The name of the volume.
 Name string `json:"name"`

 // The name of the network on which the volume resides.
 NetworkName string `json:"networkName"`

 // The size of the volume.
 Size string `json:"size"`

 // The volume status.
 Status string `json:"status"`

 // The volume ID.
 VolumeID string `json:"volumeID"`

 // The volume type.
 VolumeType string `json:"volumeType"`
}

JSON

{
 "attachments": [
 {
 "deviceName": "",
 "instanceID": {
 "id": "",
 "metadata": {}
 },
 "status": "",
 "volumeID": ""
 }
],
 "availabilityZone": "",
 "iops": 0,
 "name": "",
 "networkName": "",
 "size": "",
 "volumeID": "",
 "volumeType": ""
}

VolumeAttachment

A volume attachment provides information about an object attached to a storage
volume.

Go

type VolumeAttachment struct {
 // The name of the device on which the volume to which the object is
 // attached is mounted.
 DeviceName string

 // The ID of the instance on which the volume to which the attachment
 // belongs is mounted.
 InstanceID *InstanceID

 // The status of the attachment.
 Status string

 // The ID of the volume to which the attachment belongs.
 VolumeID string
}

JSON

{
 "deviceName": "",
 "instanceID": {
 "id": "",
 "metadata": {}
 },
 "status": "",
 "volumeID": ""
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/architecture-centralized.png
CONTAINER RUNTIME

CONTAINER RUNTIME

LIBSTORAGE CLIENT

LIBSTORAGE CLIENT

OPERATING
SYSTEM

LIBSTORAGE SERVER

STORAGE

PLATFORM

CENTRALIZED
STORAGE
ORCHESTRATION
TOOL

HETEROGENEOUS
STORAGE API

_images/architecture-today.png
CONTAINER RUNTIME

CONTAINER RUNTIME

VOLUME PLUGIN

OPERATING

SYSTEM

’,,/ =3 STORAGE
- ORCHESTRATION

VOLUME PLUGIN TOOL
CONTROL PLANE e
F HETEROGENEOUS
DATA PLANE o STORAGE API
- Z -
STORAGE PLATFORM

.tls/README.html

 Navigation

 		
 index

 		libstorage-akutz stable documentation »

Example libStorage Config with TLS

libstorage:
 tls:
 serverName: libstorage-server
 clientCertRequired: true
 trustedCertsFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-ca.crt
 service: vfs
 logging:
 httpRequests: true
 httpResponses: true
 client:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.key
 server:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.key
 services:
 vfs:
 libstorage:
 storage:
 driver: vfs
 mock:
 libstorage:
 storage:
 driver: mock

Example REX-Ray Config with TLS

rexray:
 modules:
 default-docker:
 libstorage:
 tls:
 serverName: libstorage-server
 clientCertRequired: true
 trustedCertsFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-ca.crt
 service: vfs
 logging:
 httpRequests: true
 httpResponses: true
 client:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.key
 server:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.key
 services:
 vfs:
 libstorage:
 storage:
 driver: vfs
 mock:
 libstorage:
 storage:
 driver: mock

It’s also possible to disable TLS without removing all the keys. Under the tls key (at any of the known scopes), place disabled: true. For example, here’s the libStorage config with all of the TLS settings, but the server has TLS disabled:

Example libStorage Config with TLS Disabled

libstorage:
 tls:
 serverName: libstorage-server
 clientCertRequired: true
 trustedCertsFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-ca.crt
 service: vfs
 logging:
 httpRequests: true
 httpResponses: true
 client:
 libstorage:
 tls:
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-client.key
 server:
 libstorage:
 tls:
 disabled: true
 certFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.crt
 keyFile: /Users/akutz/Projects/go/src/github.com/emccode/libstorage/.tls/libstorage-server.key
 services:
 vfs:
 libstorage:
 storage:
 driver: vfs
 mock:
 libstorage:
 storage:
 driver: mock

 © Copyright 2016.
 Created using Sphinx 1.3.5.

